Intramolecular glycosylation under neutral conditions for synthesis of 1,4-linked disaccharides

Jane B. Laursen, Lars Petersen and Knud J. Jensen*

Department of Chemistry, Technical University of Denmark, Building 201, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark okkj@pop.dtu.dk

SUPPORTING INFORMATION

EXPERIMENTAL PROCEDURES

General Procedures: Melting points were uncorrected. CH₃NO₂ was purified by vacuum distillation to remove the water/CH₃NO₂ azeotrop, followed by drying with CaSO₄, and stored at 4°C in dark bottles over 4Å molecular sieves. Water contents (< 20 ppm) were measured by Karl-Fischer titration. All other solvents were distilled and/or stored over 3Å or 4Å molecular sieves as appropriate. ¹H NMR spectra were recorded on either a Varian Mercury 300 operating at 300.06 MHz equipped with a 4-nuclei probe or a Varian Unity Inova 500 operating at 499.87 MHz equipped with a z- (single axis) PFG inverse detection C-H-P probe. ¹³C-NMR were recorded on a Varian Mercury 300 operating at 75.46 MHz. Chemical shift (δ) values are in ppm, coupling constants (J) are in Hz. All assignments were supported by 2D homonuclear chemical-shift correlation spectroscopy (gCOSY) and heteronuclear single quantum correlated spectroscopy (gHSQC) experiments. Thin-layer chromatography was performed on Merck Silica Gel 60 F₂₅₄ plates and spots were visualized by UV light at 254 nm and/or spraying with 10% aq. H₂SO₄ followed by heating. Vacuum liquid chromatography was carried on Merck Silica Gel 60H. HPLC analyses were conducted with a Waters system (600 control unit, 996 photodiode array (PDA) detector, 717 Plus autosampler, Millenium32 control software) on a Waters Nova-Pak C18 column (3.9×5.0 mm cartridge; 4 µm particle size) using a linear gradient of 0.1% aq. TFA (A) and 0.1% TFA in CH₃CN (B): 0 min: 0% B, 2 min: 0% B, 5 min: 50% B, 12 min: 95% B, 13 min: 95% B, 13.5 min: 0% B, 20 min: 0% B. Monitoring was from 200 to 400 nm, integrations were performed at 215 and 265 nm, and individual peaks were analyzed by their UV-spectra. The purity of compounds was determined from integrations at 215 nm. MS analyses were performed on a Micromass LCT mass spectrometer.

Synthesis of esters 3 and 9: 2-Fluoro-3,5-dinitrobenzoic acid 1 was dissolved in dry CH₂Cl₂ (2 mL/mmol 1) and dry DMF (0.1 equiv.) was added. An argon atmosphere was established and oxalyl chloride (1.0 equiv.) was added slowly. The reaction mixture was stirred for 15 min. at r.t. (dilution of 1 drop of the reaction mixture with MeOH, followed by TLC, indicated full conversion). The reaction

mixture was neutralized by addition of 2,6-lutidine (2.5 equiv.) under cooling on ice (dark red slurry). The alcohol (2 or 8, 1.0 equiv.) was added and the stirring continued for an additional 2 h. The product was purified by column chromatography (eluting with CH₂Cl₂ or EtOAc-hexane) to give 3 as slightly yellow crystals (mp. 146-149.5°C) in 78% yield or 9 as yellow crystals (mp. 55-59°C) in 63% yield, respectively.

Synthesis of aryl glycosides 5, 11, and 12 (Table 1): 2,3,4,6-Tetra-O-benzyl-D-glucopyranose 4 or mannopyranose 10 (l equiv.), ester 3 or 9 (1.2 equiv.) and Li₂CO₃ (2.0 equiv.) were suspended in dry CH₂Cl₂ (10 mL/mmol 4/10) under an argon atmosphere. The soluble base (DMAP, 0.3 equiv. dissolved in CH₂Cl₂, 0.5 mL, or 1,4-dimethylpiperazine, 0.6 equiv.) was added from a syringe in 5 portions over 25 min. The reactions were stirred at r.t. for the time indicated (Table 1) and monitored by analytical HPLC or TLC. The reaction mixture was purified by column chromatography (eluting with CH₂Cl₂-Et₂O) to give 5 in 90% yield (α/β ratio 8:1, mp. 56-66°C), 11 in 67% yield (α/β ratio 1:9.5, mp. 60-62°C), or 12 in 53% yield (α/β ratio 0:1, mp. 55-61°C), respectively.

Synthesis of 6: Aryl glycoside 5 (259 mg, 0.25 mmol) was dissolved in a mixture of HCOOH (6 mL, 0.16 mol), Et_2O (4 mL) and toluene (4 mL) and stirred for 45 min. The solution was extracted with water (6 × 4.5 mL), until pH ~ 5-6 of the aqueous phase, and the organic phase was dried over Na_2SO_4 and concentrated to a small volume. The crude product was purified by column chromatography (eluting with EtOAc-hexane) to yield title compound 6 as an oil in 46%.

General method for model intramolecular glycosylation (glycosyl transfer) and HPLC analysis (Table 2): The initial evaluation of conditions for the glycosylation was performed by dissolving the tethered glycoside 6, 11, or 12 (typically 0.01 mmol) in the solvent indicated (600 μ L), adding the promoter indicated and mixing on an Eppendorf Thermomixer 5436 (combined heater/shaker). After shaking for the indicated period, a sample (40 μ L) was diluted in acetonitrile (0.6 mL) and analyzed by analytical HPLC. Reported yields are based on integrated areas (215 nm).

Intramolecular glycosylation (glycosyl transfer): Up-scaled synthesis of glycosides 7, 13, and 14: Aryl glycosides 6, 11 and 12 were dissolved in dry CH₃NO₂ (1.5 mL/mmol) under argon. The reactions were stirred at 60°C for the time indicated in Table 2 and monitored by analytical HPLC. Products were isolated as oils after purification by chromatography (silica gel column, eluting with EtOAc-hexane, or prep. HPLC). 7 was isolated in 39% yield (α/β ratio 2.7:1), 13 in 24% yield (α/β ratio 1:1.3) and 14 in 49% yield (α/β ratio 3.7:1), respectively.

Synthesis of 15 and 16: Esters 13 and 14 were dissolved in MeOH saturated with NaOMe. The reaction mixtures were stirred for 5 min. at r.t. and neutralized with dry ice. Products were purified by column chromatography (eluting with EtOAc-hexane) as oils in 95% (15) and 93% (16) yield, respectively.

SPECTROSCOPIC AND ANALYTICAL DATA

In the following NMR assignment, the carbohydrate moiety acting as the acceptor in glycosylation reactions is referred to as the A-ring, whereas the donor moiety is referred to as the B-ring.

3: 1 H NMR (CDCl₃) δ : 3.5 (t, 2H), 4.6 (t, 2H), 7.2-7.5 (m, 15H), 9.07 (dd, 1H, J = 3Hz, J = 6Hz), 9.11 (dd, 1H, J = 3Hz, J = 5Hz). 13 C NMR (CDCl₃), δ : 61.4 (1C, CH₂), 66.5 (1C, CH₂), 86.8 (1C, CPh₃), 123.3-131.8 (19C, Trt-2-6, C-1,3,4,6) 143.5 (3C, Trt-1), 156.7 (C-5), 159.0 (C-2), 160.7 (Ar-CO₂R). ES-MS, calcd. for $C_{28}H_{21}FN_{2}O_{7}$: 516,13. Found: m/z 243.1 [Trt]⁺.

α5: ¹H NMR (Acetone-d₆), δ: 3.57 (dd, 1H, H-6, J = 1.7, J = 11.0), 3.68 (dd, 1H, H-6', J = 3.6, J = 11), 3.69 (dd, 1H, H-4, J = 9.2, J = 10), 3.70 (dd, 1H, H-2, J = 3.2, J = 9.4), 3.66-3.51 (2 × m, 2H, C \underline{H}_2 OTrt), 3.94 (ddd, 1H, H-5, J = 1.7, J = 3.6, J = 10), 4.04 (dd, 1H, H-3, J = 9.2, J = 9.4), 4.6 (broad t, 2H, C \underline{H}_2 OCO), 4.4-5.0 (m, 8H, C \underline{H}_2 -Bn), 5.76 (d, 1H, H-1, J = 3.2), 7.0-7.4 (m, 35H, Ar- \underline{H}), 8.68 (d, 1H, Ar-3, J = 3.0), 8.72 (d, 1H, Ar-5, J = 3.0). ¹³C NMR (Acetone-d₆), δ: 62.6-66.6 (2C, -O- \underline{C} H₂), 69.2, 73.8, 74.4, 74.9, 75.5, 76.1, 77.6, 82.1, 82.3 (9C, 4 × \underline{C} H₂-Bn, 5 × sugar- \underline{C}), 87.5 (1C, \underline{C} -Trt), 104.5 (1C, \underline{C} -1), 124.4 (1C, \underline{A} r-CO₂R), 127.9-149.8 (46C, 42 × Bn/Trt, 2 × \underline{A} r-H, 2 × \underline{A} r-NO₂), 154.6 (1C, \underline{A} r-Glc), 163.6 (1C, \underline{C} =O). ES-MS, calcd. for C₆₂H₅₆N₂O₁₃: 1036.38. Found: m/z 243.1 [Trt]⁺. Anal. Calcd. for C₆₂H₅₆N₂O₁₃: C 71.80; H 5.44; N 2.70. Found: C 71.77; H 5.57; N 2.70.

α6: ¹H NMR (Acetone-d₆), δ: 3.71 (dd, 1H, H-4, J = 9.3, J = 10), 3.72 (dd, 1H, H-6, J = 1.8, J = 11), 3.78 (dd, 1H, H-6', J = 3.8, J = 11), 3.78 (dd, 1H, H-2, J = 3.2, J = 9.6), 3.89 (t, 2H, CH₂OH, J = 4.7, J = 4.7), 3.96 (ddd, 1H, H-5, J = 1.8, J = 3.8, J = 10), 4.06 (dd, 1H, H-3, J = 9.4, J = 9.6), 4.5 (t, 2H, CH₂OCO, J = 4.7, J = 4.7), 4.4-5.0 (m, 8H, CH₂-Bn), 5.90 (d, 1H, H-1, J = 3.2), 7.1-7.4 (m, 20H, Ar-Hon Bn), 8.66 (d, 1H, Ar-3, J = 2.9), 8.71 (d, 1H, Ar-5, J = 2.9). ¹³C NMR (Acetone-d₆), δ: 60.5-60.7 (2C, CH₂), 69.5 (1C, C-4), 74.0 (1C, C-5), 74.5 (1C, C-3), 75.2 (1C, C-6), 75.7 (1C, C-2), 76.3-82.4 (4C, CH₂-Bn), 103.9 (1C, C-1), 124.4 (1C, Ar-5), 128.2 (1C, Ar-2), 128.4 – 128.7 (4C, Bn-4), 128.9 – 129.1 (8C, Bn-3,5), 129.2 – 129.3 (8C, Bn-2,6), 130.5 (1C, Ar-3), 138.7 – 140.1 (4C, Bn-1), 142.4 (1C, Ar-6), 145.8 (1C, Ar-4), 154.2 (1C, Ar-1), 164.5 (1C, C=O).

α7: 1H NMR (Acetone-d₆), δ: 3.55 (dd, 1H, H-4, J = 9.0, J = 10.2), 3.56 (dd, 1H, H-2, J = 3.42, J = 9.4), 3.71 (d, 2H, 2 × H-6, J = 3.4), 3.86 (ddd, 1H, H-5, J = 3.4, J = 3.4, J = 10.2), 3.92 (dd, 1H, H-3, J = 9.0, J = 9.4), 3.96 (ddd, 1H, Ether-CH₂-a, J = 3.0, J = 5.5, J = 9.0), 4.15 (ddd, 1H, Ether-CH₂-b, J = 3.0, J = 6.0, J = 9.4), 4.51 (d, 1H, CH₂-Bn, J = 12), 4.57 (d, 1H, CH₂-Bn, J = 12), 4.58 (d, 1H, CH₂-Bn, J = 11), 4.71 (d, 2H, CH₂-Bn, J = 3.8), 4.79 (t, 2H, Ester-CH₂, 2 × J = ~9), 4.82 (d, 1H, CH₂-Bn, J = 11), 4.91 (d, 1H, CH₂-Bn, J = 11), 4.96 (d, 1H, CH₂-Bn, J = 11), 5.11 (d, 1H, H-1, J = 3.4), 7.1-7.4 (m, 20H, Bn-H), 8.80 (d, 1H, Ar-2, J = 2.9), 8.87 (s, 1H, Ar-OH), 8.92 (d, 1H, Ar-2, J = 2.9). 13 C NMR (Acetone-d₆), δ: 66.6 (1C, Ester-CH₂), 66.0 (1C, Ether-CH₂), 70.1 (1C, C-4), 71.7 (1C, C-5), 72.8 (1C, C-3), 73.8 (1C, C-6), 75.4 (1C, C-2), 75.9-82.7 (4C, CH₂-Bn), 97.5 (1C, C-1), 102.4 (1C, Ar-1), 126.9 (1C, Ar-4), 128.0-128.2 (4C, Bn-4), 128.4-128.6 (8C, Bn-3,5), 128.7-129.0 (8C, Bn-2,6), 130.7 (1C, Ar-6), 139.7 (1C, Ar-3), 139.7 (1C, Ar-5), 138.7-140.1 (4C, Bn-1), 140.2 (1C, Ar-2), 163.8 (1C, C=O). ES-MS, calcd. for C₄₃H₄₂N₂O₁₃: 794.27. Found: m/z 817.2 [M + Na]⁺, 607.2 [M - (3,5-dinitro-2-hydroxybenzoyl) + H + Na]⁺.

9: 1 H NMR (CDCl₃), δ : 3.41 (s, 3H, OCH₃), 3.50 (dd, 1H, H-4, J = 10, J = 8.9), 3.54 (dd, 1H, H-2, J = 3.8, J = 9.4), 3.81 (dd, 1H, H-3, J = 9.4, J = 9.1), 3.92 (ddd, 1H, H-5, J = 2.1, J = 5.2, J = 9.8), 4.58 (dd, 1H, H-6, J = 5.2, J = 12), 4.62 (d, 1H, H-1, J = 3.6), 4.67 (d, 1H, Ph-CH₂(a), J = 12), 4.69 (d, 1H, H-6', J = 2.1, J = 12), 4.71 (d, 1H, Ph-CH₂(b), J = 11), 4.79 (d, 1H, Ph-CH₂(a'), J = 12), 5.04 (d, 1H, Ph-CH₂(a'), J = 12), 5

CH₂(b'), J = 11), 7.1-7.4 (m, 10H, Ph-H), ~9.0 (m, 2H, Ar-H4, Ar-H6). ¹³C NMR (CDCl₃), δ : 55.6 (1C, OCH₃), 66.2 (1C, C-6), 69.0 (1C, C-5), 70.2 (1C, C-4), 73.5 (1C, Ph-CH₂), 75.7 (1C, Ph-CH₂), 79.9 (1C, C-2), 81.3 (1C, C-3), 98.5 (1C, C-1 α), 121 (1C, Ar-1), 125.4 (1C, Ar-4), 128.3-128.9 (10C, 10 × Ph-H), 132.1 (2C, Ar-3, Ar-6), 138.1-138.7 (2C, Ph-C), 156 (1C, Ar-5), 159 (1C, Ar-2), 161 (1C, C=O). ES-MS, calcd. for C₂₈H₂₇FN₂O₁₁: 586.16. Found: m/z 609.1 [M + Na]⁺.

β11: 1 H NMR (CDCl₃), δ: A-RING: 3.36 (s, 3H, OCH₃), 4.7 (d, 1H, H-1, J = 3.4), 3.49 (dd, 1H, H-2, J = 3.4, J = 9.4), 3.77 (dd, 1H, H-3, J = 9.4, J = 9.4), 3.48 (dd, 1H, H-4, J = 9.4, J = 9.4), 3.78 (m, 1H, H-5), 4.49 (m, 2H, 2 × H-6), B-RING: 5.19 (d, 1H, H-1', J = 7.7), 3.82 (dd, 1H, H-2', J = 7.7, J = 8.5), 3.68 (dd, 1H, H-3', J = 8.5, J = 8), 3.70 (dd, 1H, H-4', J = 9, J = 9), 3.35 (ddd, 1H, H-5', J = 1.7, J = 4.7, J = 9), 3.55 (dd, 1H, H-6', J = 1.7, J = 11), 3.62 (dd, 1H, H'-6', J = 4.7, J = 11), 4.98 (d, 1H, Bn-CH₂(a'), J = 11), 4.70 (d, 1H, Bn-CH₂(a), J = 10.5), 4.69 (d, 1H, Bn-CH₂(b), J = 11), 4.96 (d, 1H, Bn-CH₂(b'), J = 11), 4.79 (d, 1H, Bn-CH₂(c), J = 10), 4.92 (d, 1H, Bn-CH₂(c), J = 10), 4.56 (d, 1H, Bn-CH₂(d), J = 11), 4.79 (d, 1H, Bn-CH₂(d'), J = 11), 4.57 (d, 1H, Bn-CH₂(e), J = 12), 4.65 (d, 1H, Bn-CH₂(e'), J = 12), 4.38 (d, 1H, Bn-CH₂(f), J = 12), 4.49 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H), 8.7 (d, 1H, Ar-H4/6), 8.8 (d, 1H, Ar-H4/6). ¹³C NMR (CDCl₃), δ: 55.4 (1C, OCH₃), 65.6 (1C, C-6), 68.5 (1C, C-5'), 68.8 (1C, C-5), 70.0 (1C, C-4), 73.0-75.8 (8C, CH₂-Ph, C-6', C-4'), 79.8 (1C, C-2), 81.2 (1C, C-3'), 82.1 (1C, C-2'), 84.2 (1C, C-3), 98.0 (1C, C-1), 104.5 (1C, C-1'), 122.6 (1C, Ar-1), 127.7-128.6 (31C, Ph-H, Ar-4), 129.0 (1C, Ar-6), 131.0 (1C, Ar-3), 137.8-138.6 (6C, Ph-C), 143.0 (1C, Ar-5), 151.1 (1C, Ar-2), 163.4 (1C, C=O). Anal. Calcd. for C₆₂H₆₂N₂O₁₇: C 67.26; H 5.64; N 2.53. Found: C 66.88; H 5.85; N 2.78.

 α 12: ¹H NMR (CDCl₃), δ: A-RING: 3.40 (s, 3H, OCH₃), 4.6 (d, 1H, H-1, J = 3.8), 3.50 (dd, 1H, H-2, J = 3.8, J = 9.8), 3.79 (dd, 1H, H-3, J = 9.4, J = 9.0), 3.53 (dd, 1H, H-4, J = 9.0, J = 9.0), 3.88 (m, 1H, H-5), 4.62 (m, 2H, 2 × H-6), B-RING: 5.65 (d, 1H, H-1', J = small, ¹J[¹³CH(1)] = 196.5), 4.25 (dd, 1H, H-2', J = 2, J = 2.5), 3.98 (dd, 1H, H-3', J = 2.5, J = 8.5), 3.65 (dd, 1H, H-4', J = 9, J = 9), 3.70 (ddd, 1H, H-5', J = 9, J = 4.5, J = ~2), 3.49 (d, 1H, H-6', J = 12), 3.40 (d, 1H, H'-6', J = 12), 4.85 (d, 1H, Bn-CH₂(a), J = 12), 5.0 (d, 1H, Bn-CH₂(a'), J = 12), 4.75 (d, 1H, Bn-CH₂(a'), J = 11), 5.0 (d, 1H, Bn-CH₂(c'), J = 11), 4.55 (d, 1H, Bn-CH₂(d), J = 11), 4.88 (d, 1H, Bn-CH₂(d'), J = 11), 4.45 (d, 1H, Bn-CH₂(e), J = 12), 4.78 (d, 1H, Bn-CH₂(e'), J = 12), 4.42 (d, 1H, Bn-CH₂(f), J = 12), 4.6 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H on Bn), 8.65 (d, 1H, Ar-H4/6), 8.75 (d, 1H, Ar-H4/6). ¹³C NMR (CDCl₃), δ: 56 (1C, OCH₃), 69 (2C, C-6, C-5'), 69.5 (1C, C-5), 70 (1C, C-4), 72-77 (8C, CH₂-Ph, C-4', C-6'), 79 (1C, C-2), 80 (1C, C-3'), 81 (1C, C-2'), 82 (1C, C-3), 98 (1C, C-1), 105 (1C, C-1'), 123 (1C, Ar-3), 127-129 (32C, Ph-H, Ar-1, Ar-6), 129.5 (1C, Ar-4), 137.8-138.6 (6C, Ph-C), 142 (1C, Ar-5), 153 (1C, Ar-2), 163 (1C, C=0). ES-MS, calcd. for C₆₂H₆₂N₂O₁₇: 1106.4049. Found: m/z 1129.1 [M + Na]⁺, 1124.2 [M + H₂O + H]⁺, 563.1 [(BnO)₄Glc + Na]⁺.

 α **13**: 1 H NMR (CDCl₃), δ: A-RING: 3.40 (s, 3H, OCH₃), 4.65 (d, 1H, H-1, J = 2.6), 3.55 (dd, 1H, H-2, J = 2.6, J = 9.0), 4.10 (dd, 1H, H-3, J = 9.0, J = 9.0), 3.83 (dd, 1H, H-4, J = 9.0, J = 9.8), 4.08 (ddd, 1H, H-5, J = 9.8, 2 × J = small), 4.7 (2 × d, 2H, 2 × H-6, 2 × J = small), B-RING: 5.54 (d, 1H, H-1', J = 3.8), 3.51 (dd, 1H, H-2', J = 3.8, J = 9.4), 3.96 (dd, 1H, H-3', J = 9.4, J = 9.4), 3.54 (dd, 1H, H-4', J = 9.4, J = 9.8), 3.76 (ddd, 1H, H-5', J = 9.8, 2 × J = 2-5), 3.5 (m, 2H, 2 × H-6'), 4.84 (d, 1H, Bn-CH₂(a), J = 12), 4.98 (d, 1H, Bn-CH₂(a'), J = 12), 4.8 (d, 1H, Bn-CH₂(b), J = 11), 4.9 (d, 1H, Bn-CH₂(b'), J = 11), 4.46 (d, 1H, Bn-CH₂(c), J = 11), 4.82 (d, 1H, Bn-CH₂(c'), J = 11), 4.65 (d, 1H, Bn-CH₂(d), J = 12), 4.78 (d, 1H, Bn-CH₂(d'), J = 12), 4.58 (d, 1H, Bn-CH₂(e), J = 12), 4.70 (d, 1H, Bn-CH₂(e'), J = 12), 4.52 (d, 1H, Bn-CH₂(f), J = 12), 4.64 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H på Bn), 8.7 (d, 1H, Ar-H4/6), 8.92 (d, 1H, Ar-H4/6). ¹³C NMR (CDCl₃), δ: 55.5 (1C, OCH₃), 66.7 (1C, C-6), 67.8 (1C, C-5'),

68.9 (1C, C-5), 71.9 (1C, C-4), 73.5-75.1 (6C, $\underline{C}H_2$ -Ph), 75.5 (1C, C-6'), 77.9 (1C, C-4'), 79.2 (1C, C-2), 80.0 (1C, C-3'), 81.0 (1C, C-2'), 81.7 (1C, C-3), 97.7-97.8 (2C, C-1, C-1'), 115.8 (1C, Ar-1), 126.5-128.5 (31C, 30 \times \underline{Ph} -H, Ar-4), 130.0 (1C, Ar-6), 137.7-138.8 (7C, 6 \times \underline{Ph} -C, Ar-3), 159.5 (1C, Ar-5), 167.3 (1C, Ar-2), 167.5 (1C, C=O).

β13: ¹H NMR (CDCl₃), δ: A-RING: 3.39 (s, 3H, OCH₃), 4.47 (d, 1H, H-1, J = 4.3), 3.47 (dd, 1H, H-2, J = 4.3, J = 9.0), 3.95 (dd, 1H, H-3, J = 9.0, J = 9.8), 3.78 (dd, 1H, H-4, J = 9.8, J = 9.0), 3.88 (ddd, 1H, J = 9.0, 2 × J = small, H-5), 4.40 (d, 1H, J = 12, H-6), 4.74 (d, 1H, H'-6), B-RING: 4.47 (d, 1H, H-1', J = 8.1), 3.44 (dd, 1H, H-2', J = 8.1, J = 9.4), 3.69 (dd, 1H, H-3', J = 9.0, J = 9.0), 3.55 (dd, 1H, H-4', J = 9.0, J = 9.0), 3.46 (ddd, 1H, H-5', J = 9.0, 2 × J = small), 3.58-3.67 (2 × d, 2H, 2 × H-6'), 4.85 (d, 1H, Bn-CH₂(a), J = 12), 5.02 (d, 1H, Bn-CH₂(a'), J = 12), 4.83 (d, 1H, Bn-CH₂(b), J = 11), 4.89 (d, 1H, Bn-CH₂(b'), J = 11), 4.76 (d, 1H, Bn-CH₂(c), J = 11), 4.87 (d, 1H, Bn-CH₂(c), J = 11), 4.50 (d, 1H, Bn-CH₂(d), J = 12), 4.78 (d, 1H, Bn-CH₂(d'), J = 12), 4.58 (d, 1H, Bn-CH₂(e), J = 12), 4.76 (d, 1H, Bn-CH₂(e'), J = 12), 4.32 (d, 1H, Bn-CH₂(f), J = 12), 4.35 (d, 1H, Bn-CH₂(f'), J = 12), 7.0-7.4 (m, 30H, Ar-H on Bn), 8.7 (d, 1H, Ar-H4/6), 9.0 (d, 1H, Ar-H4/6). ¹³C NMR (CDCl₃), δ: 55.5 (1C, OCH₃), 65.6, 66.3, 68.7, 69.0 (4C, 4 × sugar-C), 73.6-76.1 (6C, CH₂-Ph), 77.4 (1C, C-6'), 77.9 (1C, C-4), 78.2 (1C, C-3'), 80.0 (1C, C-3), 83.0 (1C, sugar-C), 86.0 (1C, C-4'), 98.2 (1C, C-1), 103.4 (1C, C-1'), 116.4 (1C, Ar-1), 126.6 (1C, Ar-4), 127.6-128.7 (30C, Ph-H), 130.3 (1C, Ar-6), 137.7-138.8 (7C, 6 × Ph-C, Ar-3), 148.4 (1C, Ar-5), 159.6 (1C, Ar-2), 166.9 (1C, C=O). ES-MS, calcd. for C₆₂H₆₂N₂O₁₇: 1106.40. Found: m/z 1129.2 [M + Na]⁺.

 α 14: ¹H NMR (CDCl₃), δ: A-RING: 3.4 (s, 3H, OCH₃), 4.57 (d, 1H, H-1, J = 3.4), 3.54 (dd, 1H, H-2, J = 3.4, J = 9.8), 3.89 (dd, 1H, H-3, J = 9.4, J = 9.0), 3.63 (dd, 1H, H-4, J = 9.4, J = 9.8), 4.08 (ddd, 1H, H-5, J = 9.8, J = 2, J = 5), 4.82 (dd, 1H, H'-6, J = 1.7, J = 12), 4.60 (d, 1H, H-6, J = 12), B-RING: 5.28 (d, 1H, H-1', J = 2.1), 3.70 (dd, 1H, H-2', J = 2.1, J = 2.6), 3.88 (dd, 1H, H-3', J = 2.6, J = 7.5), 3.58 (dd, 1H, H-4', J = 7.5, J = 6.8), 3.86 (m, 1H, H-5'), 3.66 (m, 2H, 2 × H-6'), 4.59 (d, 1H, Bn-CH₂(a), J = 12), 5.06 (d, 1H, Bn-CH₂(a'), J = 12), 4.60 (d, 1H, Bn-CH₂(b), J = 12), 4.71 (d, 1H, Bn-CH₂(b'), J = 12), 4.60 (d, 1H, Bn-CH₂(c), J = 12), 4.45 (d, 1H, Bn-CH₂(d), J = 12), 4.80 (d, 1H, Bn-CH₂(d'), J = 11), 4.39 (d, 1H, Bn-CH₂(e), J = 11), 4.46 (d, 1H, Bn-CH₂(e'), J = 12), 4.20 (d, 1H, Bn-CH₂(f), J = 12), 4.30 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H on Bn), 8.86 (d, 1H, Ar-H4/6, J = 2.6), 8.92 (d, 1H, Ar-H4/6, J = 2.6). ¹³C NMR (CDCl₃), δ: 55.5 (1C, OCH₃), 66.0 (1C, C-6), 66.5 (1C, C-5'), 68.1 (1C, C-5), 69.9 (1C, C-4), 72.3-76.5 (8C, CH₂-Ph, C-6', C-4'), 78.5 (1C, C-2), 79.2 (1C, C-3'), 79.9 (1C, C-2'), 81.2 (1C, C-3), 97.8 (1C, C-1), 101.0 (1C, C-1'), 115.9 (1C, Ar-1), 126.5 (1C, Ar-4), 127.0-128.6 (30C, Ph-H), 130.2 (1C, Ar-6), 137.5-138.4 (8C, 6 × Ph-C, Ar-3, Ar-5), 159.5 (1C, Ar-2), 167.2 (1C, C=O). ES-MS, calcd. for C₆₂H₆₂N₂O₁₇: 1106.4049. Found: m/z 1129.2 [M + Na]⁺.

β14 ¹H NMR (CDCl₃), δ: A-RING: 3.46 (s, 3H, OCH₃), 4.69 (d, 1H, H-1, J = 3.4), 3.64 (dd, 1H, H-2, J = 3.8, J = 9.4), 4.03 (dd, 1H, H-3, J = 9.4, J = 9.4), 5.35 (dd, 1H, H-4, J = 9.8, J = 9.8), 4.00 (broad d, 1H, H-5, J = ~10), 3.78 (dd, 1H, H'-6, J = 3, J = 12), 3.50 (broad d, 1H, H-6, J = 12), B-RING: 4.84 (d, 1H, H-1', J = ~2), 3.82 (dd, 1H, H-2', J = ~2, J = ~2), 3.87 (dd, 1H, H-3', J = ~3, J = 9.4), 3.71 (dd, 1H, H-4', J = 9.4, J = 9.4), 3.48 (m, 1H, H-5'), 3.57 (broad d, 1H, H-6', J = 12), 3.41 (broad d, 1H, H'-6', J = 12), 4.53 (d, 1H, Bn-C \underline{H}_2 (a), J = 12), 4.89 (d, 1H, Bn-C \underline{H}_2 (a'), J = 12), 4.73 (d, 1H, Bn-C \underline{H}_2 (b), J = 12), 4.86 (d, 1H, Bn-C \underline{H}_2 (b'), J = 12), 4.51 (d, 1H, Bn-C \underline{H}_2 (c), J = 11), 4.84 (d, 1H, Bn-C \underline{H}_2 (c), J = 11), 4.67 (d, 1H, Bn-C \underline{H}_2 (d), J = 12), 4.73 (d, 1H, Bn-C \underline{H}_2 (d), J = 12), 4.63 (d, 1H, Bn-C \underline{H}_2 (e), J = 11), 4.65 (d, 1H, Bn-C \underline{H}_2 (e'), J = 11), 4.20 (d, 1H, Bn-C \underline{H}_2 (f), J = 12), 4.26 (d, 1H, Bn-C \underline{H}_2 (f'), J = 12), 7.1-7.4 (m, 30H, Ar- \underline{H} on Bn), 8.1 (d, 1H, Ar-H4/6), 8.6 (d, 1H, Ar-H4/6). ES-MS, calcd. for C₆₂H₆₂N₂O₁₇: 1106.40. Found: m/z 1129.1 [M + Na]⁺, 1124.2 [M + H₂O + H]⁺.

 α **15**: 1 H NMR (CDCl₃), δ: A-RING: 3.38 (s, 3H, OCH₃), 4.60 (d, 1H, H-1, J = 3.4), 3.57 (dd, 1H, H-2, J = 3.4, J = 9.4), 4.10 (dd, 1H, H-3, J = 9.4, J = 9.0), 4.03 (dd, 1H, H-4, J = 8.5, J = 9.8), 3.74 (ddd, 1H, H-5, J = 9.8, 2 × J = small), 3.94 (dd, 1H, H-6, J = 11, J = small), 3.76 (dd, 1H, H'-6, J = 11, J = small), B-RING: 5.76 (d, 1H, H-1', J = 3.8), 3.48 (dd, 1H, H-2', J = 3.8, J = 9.8), 3.92 (dd, 1H, H-3', J = 9.8, J = 9.0), 3.42 (dd, 1H, H-4', J = 9.0, J = 9.4), 3.82 (ddd, 1H, H-5', J = 9.4, 2 × J = 2-5), 3.66 (dd, 1H, H-6', J = 10, J = small), 3.52 (dd, 1H, H'-6', J = 10, J = small), 4.78 (d, 1H, Bn-CH₂(a), J = 12), 5.02 (d, 1H, Bn-CH₂(a'), J = 12), 4.78 (d, 1H, Bn-CH₂(b), J = 11), 4.87 (d, 1H, Bn-CH₂(b'), J = 11), 4.56 (d, 1H, Bn-CH₂(c'), J = 12), 4.42 (d, 1H, Bn-CH₂(d), J = 11), 4.77 (d, 1H, Bn-CH₂(d'), J = 11), 4.56 (d, 1H, Bn-CH₂(e), J = 12), 4.66 (d, 1H, Bn-CH₂(e'), J = 12), 4.48 (d, 1H, Bn-CH₂(f'), J = 12), 4.60 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H on Bn). ES-MS, calcd. for C₅₅H₆₀O₁₁: 896.41. Found: m/z 919.4 [M + Na]⁺.

 α **16**: ¹H NMR (CDCl₃), δ: A-RING: 3.38 (s, 3H, OCH₃), 4.60 (d, 1H, H-1, J = 3.4), 3.57 (dd, 1H, H-2, J = 3.4, J = 9.4), 3.90 (dd, 1H, H-3, J = 9.4, J = 9.0), 3.92 (dd, 1H, H-4, J = 8.5, J = 9.8), 3.68 (m, 1H, H-5), 3.8-3.95 (2 × dd, 2H, 2 × H-6), B-RING: 5.38 (d, 1H, H-1', J = 1-2), 3.48 (m, 1H, H-2', 2 × J = 1-5), 3.94 (dd, 1H, H-3', J = 2-5, J = 9.8), 3.53 (dd, 1H, H-4', J = 9.0, J = 9.8), 3.83 (m, 1H, H-5'), 3.64-3.72 (2 × dd, 2H, 2 × H-6'), 4.63 (d, 1H, Bn-CH₂(a), J = 12), 5.08 (d, 1H, Bn-CH₂(a'), J = 12), 4.61 (d, 1H, Bn-CH₂(b), J = 11), 4.78 (d, 1H, Bn-CH₂(b'), J = 11), 4.52 (d, 1H, Bn-CH₂(c), J = 12), 4.68 (d, 1H, Bn-CH₂(c), J = 12), 4.63 (d, 1H, Bn-CH₂(d), J = 12), 4.65 (d, 1H, Bn-CH₂(d'), J = 12), 4.56 (d, 1H, Bn-CH₂(e), J = 12), 4.63 (d, 1H, Bn-CH₂(e'), J = 12), 4.22 (d, 1H, Bn-CH₂(f), J = 12), 4.15 (d, 1H, Bn-CH₂(f'), J = 12), 7.1-7.4 (m, 30H, Ar-H on Bn). ¹³C NMR (CDCl₃), δ: 55 (1C, OCH₃), 71.4, 71.6, 72.9, 73.1 (4C, 4 × sugar-C), 73.7-76.2 (6C, CH₂-Ph), 77.8, 78.5, 79.2, 80.7, 81.1, 82.5 (6C, 6 × sugar-C), 98, 99 (2C, C-1, C-1'), 127.5-129.1 (30C, Ph-H), 137-140 (6C, Ph-C). ES-MS, calcd. for C₅₅H₆₀O₁₁: 896.41. Found: m/z 919.4 [M + Na]⁺, 915.4 [M + H₂O + H]⁺.